Monday, December 16, 2013

12/16/13

Homework: pages 421-422 #13-20 all; 25, 29

Important deadlines:
Dec 18 - All homework/late work due
Dec 19 - TEST!
Dec 19 - Turn textbooks back in (late fee is $5 per textbook per day, so don't forget!)

Rectangles and squares are special types of parallelograms, but not all parallelograms are rectangles or squares.
If two sides are parallel, and the other two sides are parallel, it has to be a parallelogram.
If two sides are parallel and congruent, it has to be a parallelogram.
When you connect opposite interior angles in a parallelogram, the line halves must be congruent.

Prove that this is a parallelogram:















Statement                                                             Reason

∠A ≅ ∠C                                                             Given
∠D ≅ ∠B                                                             Given
∠A + ∠B + ∠C + ∠D = 360°                             Definition of a quadrilateral
∠A + ∠B + ∠A + ∠B = 360°                             Substitution
2∠A + 2∠B = 360°                                             Angle addition
∠A + ∠B = 180°                                                  Division property of equality            
Line AD ∥ Line BC                                              Euclid's postulate #5
                                                                                                                      ∎


Solve for x and y.



x = 41, y = 16


Plot these points and determine whether they make a parallelogram or not.
B (0, 0); C (4, 1); D (6, 5); E (2, 4)




FOUR MORE DAYS!